Meltwater routing and the Younger Dryas.
نویسندگان
چکیده
The Younger Dryas--the last major cold episode on Earth--is generally considered to have been triggered by a meltwater flood into the North Atlantic. The prevailing hypothesis, proposed by Broecker et al. [1989 Nature 341:318-321] more than two decades ago, suggests that an abrupt rerouting of Lake Agassiz overflow through the Great Lakes and St. Lawrence Valley inhibited deep water formation in the subpolar North Atlantic and weakened the strength of the Atlantic Meridional Overturning Circulation (AMOC). More recently, Tarasov and Peltier [2005 Nature 435:662-665] showed that meltwater could have discharged into the Arctic Ocean via the Mackenzie Valley ~4,000 km northwest of the St. Lawrence outlet. Here we use a sophisticated, high-resolution, ocean sea-ice model to study the delivery of meltwater from the two drainage outlets to the deep water formation regions in the North Atlantic. Unlike the hypothesis of Broecker et al., freshwater from the St. Lawrence Valley advects into the subtropical gyre ~3,000 km south of the North Atlantic deep water formation regions and weakens the AMOC by <15%. In contrast, narrow coastal boundary currents efficiently deliver meltwater from the Mackenzie Valley to the deep water formation regions of the subpolar North Atlantic and weaken the AMOC by >30%. We conclude that meltwater discharge from the Arctic, rather than the St. Lawrence Valley, was more likely to have triggered the Younger Dryas cooling.
منابع مشابه
History of Laurentide meltwater flow to the Gulf of Mexico during the last deglaciation, as revealed by reworked calcareous nannofossils
The history of meltwater flow from the Laurentide Ice Sheet to the Gulf of Mexico during the last deglaciation, which holds possible implications for the cause of the Younger Dryas cold episode, is not well understood. We propose a new chronology based on using the percentage of reworked calcareous nannofossils in Orca Basin sediments as a proxy for erosion. The period of greatest meltwater flo...
متن کاملConventional wisdom and climate history.
T he Younger Dryas interval, a cold snap that chilled many parts of the world for 1,500 years or so in the midst of the last deglaciation ( 13,000–11,500 years ago), is perhaps the best known and most studied paleoclimate event of the last 2 million years. Only a few years ago, it was well accepted that a change in the drainage routing of the huge proglacial lake that fronted the North American...
متن کاملYounger Dryas Interval and Outflow from the Laurentide Ice Sheet
A boxmodel of the Great Lakes is used to estimate meltwater flow into the North Atlantic between 8000 and 14,000 calendar years B.P. Controls on the model include the oxygen isotopic composition of meltwaters and lake waters as measured in the shells of ostracodes. Outflow rates are highest when oxygen isotopic values of the lake waters are most negative, denoting a maximum glacial meltwater co...
متن کاملThe Younger Dryas: From whence the fresh water?
[1] Oxygen isotopic records of meltwater outflow and records of sea level change do not support the idea that fresh waters derived solely from the melting of Northern Hemisphere ice sheets was likely to have stabilized the upper layers of the North Atlantic Ocean and prevented deep convection during the Younger Dryas. Yet there are paleoceanographic indicators that point to a pause in the forma...
متن کاملDeglacial meltwater pulse 1B and Younger Dryas sea levels revisited with boreholes at Tahiti.
Reconstructing sea-level changes during the last deglaciation provides a way of understanding the ice dynamics that can perturb large continental ice sheets. The resolution of the few sea-level records covering the critical time interval between 14,000 and 9,000 calendar years before the present is still insufficient to draw conclusions about sea-level changes associated with the Younger Dryas ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 49 شماره
صفحات -
تاریخ انتشار 2012